Generalized Pascal triangles and Toeplitz matrices
نویسنده
چکیده
The purpose of this article is to study determinants of matrices which are known as generalized Pascal triangles (see R. Bacher. Determinants of matrices related to the Pascal triangle. J. Théor. Nombres Bordeaux, 14:19–41, 2002). This article presents a factorization by expressing such a matrix as a product of a unipotent lower triangular matrix, a Toeplitz matrix, and a unipotent upper triangular matrix. The determinant of a generalized Pascal matrix equals thus the determinant of a Toeplitz matrix. This equality allows for the evaluation of a few determinants of generalized Pascal matrices associated with certain sequences. In particular, families of quasi-Pascal matrices are obtained whose leading principal minors generate any arbitrary linear subsequences (Fnr+s)n≥1 or (Lnr+s)n≥1 of the Fibonacci or Lucas sequence. New matrices are constructed whose entries are given by certain linear non-homogeneous recurrence relations, and the leading principal minors of which form the Fibonacci sequence.
منابع مشابه
Ela New Families of Integer Matrices Whose Leading Principal Minors Form Some Well-known Sequences∗
The purpose of this article is to obtain some new infinite families of Toeplitz matrices, 7-matrices and generalized Pascal triangles whose leading principal minors form the Fibonacci, Lucas, Pell and Jacobsthal sequences. We also present a new proof for Theorem 3.1 in [R. Bacher. Determinants of matrices related to the Pascal triangle. J. Théor. Nombres Bordeaux, 14:19–41, 2002.].
متن کاملar X iv : 0 90 1 . 25 97 v 1 [ m at h . R A ] 1 9 Ja n 20 09 GENERALIZED PASCAL TRIANGLES AND TÖEPLITZ MATRICES ∗
The purpose of this article is to study determinants of matrices which are known as generalized Pascal triangles (see [1]). We present a factorization by expressing such a matrix as a product of a unipotent lower triangular matrix, a Töeplitz matrix and a unipotent upper triangular matrix. The determinant of a generalized Pascal matrix equals thus the determinant of a Töeplitz matrix. This equa...
متن کاملPascal’s triangle and other number triangles in Clifford Analysis
The recent introduction of generalized Appell sequences in the framework of Clifford Analysis solved an open question about a suitable construction of power-like monogenic polynomials as generalizations of the integer powers of a complex variable. The deep connection between Appell sequences and Pascal’s triangle called also attention to other number triangles and, at the same time, to the cons...
متن کاملFast and Stable Pascal Matrix Algorithms
In this paper, we derive a family of fast and stable algorithms for multiplying and inverting n × n Pascal matrices that run in O(n log n) time and are closely related to De Casteljau’s algorithm for Bézier curve evaluation. These algorithms use a recursive factorization of the triangular Pascal matrices and improve upon the cripplingly unstable O(n log n) fast Fourier transform-based algorithm...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices. I. Transformations
Transformations of the form A + E’FAg2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کامل